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PostgreSQL Replication
● Added in PostgreSQL 9.0
● Based on streaming WAL (Transaction 

Log)
● Starts from base backup
● Uses standard recovery code
● Layered on top of regular protocol



  

Parts of the puzzle
● Connection processing and startup
● The PostgreSQL protocol
● The replication specific protocol
● pg_basebackup
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Replication client

1.  TCP connection established (5432)

2.  fork()

3.  SSL negotiation

4.  Get database/username/options

5.  Perform authentication

6.  Start walsender



  

What's the walsender?!
● Special purpose PostgreSQL backend
● Not connected with a database
● Only accepts simple queries
● Returns mix of resultsets and streams
● 9.0: only basic log streaming

● Client connects, requests WAL 
streaming starting at position <x>



  

The PostgreSQL protocol
● Very simple
● Always TCP
● Message-based, bi-directional
● Optionally SSL encrypted

● Entire stream wrapped



  

A message

Message
Type (byte)

Message Length
(32-bit) Message...



  

Standard query exchange

Z <size> <Transaction Status>ReadyForQuery

Q 13 SELECT 1,2,3 SimpleQuery

T <size> <col1>,<col2>,<col3>RowDescription

D <size> 1,2,3DataRow

C <size> SELECTCommandTag



  

Streaming replication

Q 22 START_REPLICATION 0/0 SimpleQuery

W <size> 0,0CopyOutResponse

d <size> <xlog data>CopyData

d <size> <xlog data>CopyData

Z <size> <Transaction Status>ReadyForQuery



  

Advances in 9.1
● Synchronous replication

● (not going to cover that)
● Hot Standby Feedback Loop

● (not going to cover that)
● Walsender “micro language”



  

Walsender micro-language
● Full grammar in walsender mode
● Few commands, few options
● Still very picky about formats
● Not designed for manual consumption
● Foundation for future improvements



  

Walsender in 9.1
● IDENTIFY_SYSTEM
● START_REPLICATION <position>
● BASE_BACKUP

[LABEL 'label']
[PROGRESS]
[FAST]
[WAL]
[NOWAIT]



  

Base backups
● Single-command base backups
● No need for separate 

pg_start_backup()/pg_stop_backup()
● Can still control backup label
● Can still control fast/slow checkpoint

● Not a silver bullet
● Old method is still there!



  

Base backups
● Still not for manual consumption
● Use bin/pg_basebackup
● Integration in third party modules and 

applications



  

Streaming base backups
● Tar format stream

● Easy to stream
● No global archive header
● Alignment-at-512-bytes cheap

● One tar stream per tablespace
● Sequential transmission



  

Streaming base backups

Z <size> <Transaction Status>ReadyForQuery

Q 24 BASE_BACKUP LABEL 'foo' SimpleQuery

T <size> spcoid, spclocation, sizeRowDescription

D <size> <tablespace information>DataRow

C <size> SELECTCommandTag



  

Streaming base backups

H <size> 0,0CopyOutResponse

d <size> <tar data>CopyData

c <size>CopyDone

H <size> 0,0CopyOutResponse

d <size> <tar data>CopyData

…..



  

Using pg_basebackup

● pg_basebackup
-D <directory>
-F<p|t>
-c <fast|spread>
-l <label>
-z

● Plus all “standard” libpq client options



  

Progress reporting
● Add -P to the commandline
● Expensive!

● Scans all tablespaces twice
● Inexact – but gives a good hint



  

Base backups and WAL
● Restore from base backup requires WAL 

archiving
● Complex to set up and monitor

● Append WAL to command, or use -x
● walsender includes required WAL files at 

end of tar file
● Use wal_keep_segments!



  

Future improvements



  

Streaming WAL archive
● Log archiving still uses archive_command
● 16Mb-blocks, or archive_timeout
● Replication protocol already does this
● pg_xlogstream



  

Prevent WAL cycling
● WAL cycled normally during backups
● In -x mode, might still be needed
● If cycled too soon, backup fails



  

WAL streaming during 
backup

● Combine streaming wal archive with 
pg_basebackup

● During backup, log is streamed in parallel
● Less WAL to keep on master



  

Relocatable tablespaces
● Currently, only $PGDATA can be moved
● In theory...
● Support moving other tablespaces
● Both for streaming and regular base 

backups!



  

Incremental backups
● “rsync” style?
● Using LSN?
● Decrease size of log archive without more 

full backups



  

Thank you!

Questions?

Twitter: @magnushagander
http://blog.hagander.net/
magnus@hagander.net
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