

The PostgreSQL
Replication Protocol

Tools and opportunities

char(11), 2011
Cambridge, UK

Magnus Hagander
magnus@hagander.net

PRODUCTS • CONSULTING • APPLICATION MANAGEMENT • IT OPERATIONS • SUPPORT • TRAINING

PostgreSQL Replication
● Added in PostgreSQL 9.0
● Based on streaming WAL (Transaction

Log)
● Starts from base backup
● Uses standard recovery code
● Layered on top of regular protocol

Parts of the puzzle
● Connection processing and startup
● The PostgreSQL protocol
● The replication specific protocol
● pg_basebackup

Normal client connection

1. TCP connection established (5432)

Normal client connection

1. TCP connection established (5432)

2. fork()

Normal client connection

1. TCP connection established (5432)

2. fork()

3. SSL negotiation

Normal client connection

1. TCP connection established (5432)

2. fork()

3. SSL negotiation

4. Get database/username/options

Normal client connection

1. TCP connection established (5432)

2. fork()

3. SSL negotiation

4. Get database/username/options

5. Perform authentication

Normal client connection

1. TCP connection established (5432)

2. fork()

3. SSL negotiation

4. Get database/username/options

5. Perform authentication

6. Select database

Normal client connection

1. TCP connection established (5432)

2. fork()

3. SSL negotiation

4. Get database/username/options

5. Perform authentication

6. Select database

7. Enter query processing loop

Replication client

1. TCP connection established (5432)

2. fork()

3. SSL negotiation

4. Get database/username/options

5. Perform authentication

6. Select database

7. Enter query processing loop

Replication client

1. TCP connection established (5432)

2. fork()

3. SSL negotiation

4. Get database/username/options

5. Perform authentication

6. Start walsender

What's the walsender?!
● Special purpose PostgreSQL backend
● Not connected with a database
● Only accepts simple queries
● Returns mix of resultsets and streams
● 9.0: only basic log streaming

● Client connects, requests WAL
streaming starting at position <x>

The PostgreSQL protocol
● Very simple
● Always TCP
● Message-based, bi-directional
● Optionally SSL encrypted

● Entire stream wrapped

A message

Message
Type (byte)

Message Length
(32-bit) Message...

Standard query exchange

Z <size> <Transaction Status>ReadyForQuery

Q 13 SELECT 1,2,3 SimpleQuery

T <size> <col1>,<col2>,<col3>RowDescription

D <size> 1,2,3DataRow

C <size> SELECTCommandTag

Streaming replication

Q 22 START_REPLICATION 0/0 SimpleQuery

W <size> 0,0CopyOutResponse

d <size> <xlog data>CopyData

d <size> <xlog data>CopyData

Z <size> <Transaction Status>ReadyForQuery

Advances in 9.1
● Synchronous replication

● (not going to cover that)
● Hot Standby Feedback Loop

● (not going to cover that)
● Walsender “micro language”

Walsender micro-language
● Full grammar in walsender mode
● Few commands, few options
● Still very picky about formats
● Not designed for manual consumption
● Foundation for future improvements

Walsender in 9.1
● IDENTIFY_SYSTEM
● START_REPLICATION <position>
● BASE_BACKUP

[LABEL 'label']
[PROGRESS]
[FAST]
[WAL]
[NOWAIT]

Base backups
● Single-command base backups
● No need for separate

pg_start_backup()/pg_stop_backup()
● Can still control backup label
● Can still control fast/slow checkpoint

● Not a silver bullet
● Old method is still there!

Base backups
● Still not for manual consumption
● Use bin/pg_basebackup
● Integration in third party modules and

applications

Streaming base backups
● Tar format stream

● Easy to stream
● No global archive header
● Alignment-at-512-bytes cheap

● One tar stream per tablespace
● Sequential transmission

Streaming base backups

Z <size> <Transaction Status>ReadyForQuery

Q 24 BASE_BACKUP LABEL 'foo' SimpleQuery

T <size> spcoid, spclocation, sizeRowDescription

D <size> <tablespace information>DataRow

C <size> SELECTCommandTag

Streaming base backups

H <size> 0,0CopyOutResponse

d <size> <tar data>CopyData

c <size>CopyDone

H <size> 0,0CopyOutResponse

d <size> <tar data>CopyData

…..

Using pg_basebackup

● pg_basebackup
-D <directory>
-F<p|t>
-c <fast|spread>
-l <label>
-z

● Plus all “standard” libpq client options

Progress reporting
● Add -P to the commandline
● Expensive!

● Scans all tablespaces twice
● Inexact – but gives a good hint

Base backups and WAL
● Restore from base backup requires WAL

archiving
● Complex to set up and monitor

● Append WAL to command, or use -x
● walsender includes required WAL files at

end of tar file
● Use wal_keep_segments!

Future improvements

Streaming WAL archive
● Log archiving still uses archive_command
● 16Mb-blocks, or archive_timeout
● Replication protocol already does this
● pg_xlogstream

Prevent WAL cycling
● WAL cycled normally during backups
● In -x mode, might still be needed
● If cycled too soon, backup fails

WAL streaming during
backup

● Combine streaming wal archive with
pg_basebackup

● During backup, log is streamed in parallel
● Less WAL to keep on master

Relocatable tablespaces
● Currently, only $PGDATA can be moved
● In theory...
● Support moving other tablespaces
● Both for streaming and regular base

backups!

Incremental backups
● “rsync” style?
● Using LSN?
● Decrease size of log archive without more

full backups

Thank you!

Questions?

Twitter: @magnushagander
http://blog.hagander.net/
magnus@hagander.net

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

